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Turbulent Rayleigh shear flow 
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Teddington 

(Received 24 June 1966 and in revised form 17 August 1967) 

Townsend has derived a relation between mean vorticity and Reynolds stress 
valid in the wall layer of a turbulent flow. The vorticity &2 appears as a function 
of the local stress 7 and its gradient. Such a relation is better suited for use in the 
vorticity equation than in the momentum equation. The Rayleigh problem, 
whose vorticity equation is simply aO/at = a27/ay2, is introduced as a setting for 
Townsend’s theory. Certain wall-speed programmes are shown to generate 
Rayleigh layers that are exactly self-similar in the fully turbulent part of the 
flow. Those layers correspond to Clauser ’s equilibrium boundary layers. A formal 
analogy between the two families is found; the analogy becomes quantitatively 
exact in the limit of infinite Reynolds number. The Rayleigh problem is posed in 
similarity form. A composite non-linear, ordinary differential equation for the 
stress profile is deduced from a two-layer model incorporating Townsend’s 
relation for the wall layer and Clauser’s constant eddy-viscosity assumption 
for the outer layer. The profile depends on the wall-speed programme selected 
and on two empirical constants: the combination A = 2 / ( k ) / K  of Clauser’s E and 
K&rm&n’s K,  and Townsend‘s constant B. Closed-form solutions for arbitrary 
h and B are obtained in two important cases: constant wall stress, analogous to 
constant pressure above a boundary layer, and zero wall stress, corresponding to 
continuous separation. The velocity profile in the wall region of a continuously 
separating Rayleigh layer is found to  depend sensitively on B. 

1. Introduction 
Stress and velocity are connected by the relation r = v azclay in laminar bound- 

ary layers, and there is no reason to consider one more fundamental than the 
other. Reynolds stress and velocity distributions have been sharply distinguished 
in turbulent boundary-layer theory, however, not so much because one of them 
is mare deeply connected with the underlying structure of the turbulence, but 
because the stress varies slowly and simply near a rigid wall, whereas the velocity 
profile exhibits a striking logarithmic behaviour that demands explanation. 
The Prandtl mixing-length theory provides an explanation in the form 

where K z 0.41 is K&rm&n’s constant. Co-ordinates x, y, z are chosen so that x 
specifies distance downstream and y specifies distance perpendicular to the wall. 
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Also 

U ,  V, 0 are the corresponding mean velocity components, 
u, v, ware the turbulent fluctuations, 
P is the mean kinematic pressure, 
p is the fluctuation pressure, 
D = aUjay is the mean vorticity, to the boundary layer approximation, and 
r = - UU is the Reynolds stress. 

As long as T approaches some constant near the wall, the logarithmic behaviour 
of U is enforced by (1) regardness of any constraint imposed by the mean momen- 
tum and continuity equations: 

au av 
ax ay 
-+- = 0. (3) 

A complicated balance between non-linear advection and viscous diffusion 
determines the shape of a laminar velocity profile. In  the turbulent case, the 
velocity near the wall is governed primarily by a balance of random processes 
represented in (1). 

Provided r varies slowly near the wall, the l/y factor in (1) determines the 
behaviour of d. It isnot obvious, however, that equations (1) and (2) are consistent 
with a non-singular stress profile. Until recently, the smoothness of the stress 
distribution had to be taken as an experimental fact rather than an analytical 
consequence of the mixing-length theory and the momentum equation. 

Clauser (1956) drew attention to the problem of mean dynamics. He dis- 
tinguished a family of boundary layers having defect profiles (U, - U)/u,nearly 
similar a t  successive stations downstream; U, is the free-stream velocity and u, 
is the square root of the local wall stress. These layers are characterized by a, 
constant ratio between the wall stress and the pressure force across the displace- 
ment thickness of the layer. Clauser solved the similarity form of equations (2), 
(3) in an outer layer only, assuming that beyond some distance from the wall T 

is related to Q by an eddy viscosity v, 2 T/D independent of y. He did not extend 
the momentum balance into the wall layer. Mellor & Gibson (1966) completed 
the programme by presenting numerical solutions for the whole family of 
‘ equilibrium ’ boundary layers. They assume that T and D are related by (1) 
in the wall layer and by Clauser’s constant eddy viscosity in the outer layer. 
They fix the junction between the layers at the point where the two relations 
are equivalent. They express the momentum equation in terms of the velocity 
profile and assign no primacy to stress. No difficulty arises, because (1)  can be 
written in the form r = r (D) .  

Townsend (1961) derived the relation 

as an improvement on (1). Equation (4) describes the mean flow in the wall 
regions of both the constant pressure boundary layer and the continuously 
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separating layer of Stratford (1959) if B M 0.2. Townsend’s relation is ill suited 
to the approach of Mellor & Gibson, because it cannot be inverted into a local 
relation r = r(C2). Q{r> appears instead as a local function of r and its f i s t  deri- 
vative. The relation suggests that Reynolds stress should be taken as the pri- 
mary dynamic quantity in accord with the older approaches. The boundary-layer 
vorticity equation, 

u-+ v-- =- 

obtained by differentiating (2) with respect to  y and using (3), establishes the 
dynamic connexion between SZ and r. A comprehensive Q{r} relation (e.g. 
Townsend’s equation (4) in the wall layer and Clauser ’s constant eddy-viscosity 

an an a27 
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FIGURE 1. Turbulent Rayleigh flow. 

assumption in the outer layer) can be substituted into the mean vorticity 
equation to produce an equation for r. The equation is complicated, since U and V 
have to be expressed as integrals of 0. 

The present paper is a study of a simpler problem that contains all the physics 
of turbulence bound in Townsend’s relation (4)-Rayleigh shear flow. Rayleigh 
flow is sketched in figure 1. An infinite rigid plate covering the (z, 2)-plane acceler- 
ates in the negative x-direction (a negative wall speed is chosen so that stress 
comes out positive), The incompressible turbulent flow above the plate is statis- 
tically homogeneous in x and z. Averages can be taken over planes parallel to the 
(x, 2)-plane. Mean velocity and Reynolds stress are nonsteady, depending on y 
and t. The continuity equation is identically satisfied with V = 0, and the mean 

au a7 
momentum equation is 

( 5 )  _ -  --  
at ay. 

Thus 

8-2 
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Once an Q{T)  relation is specified, the vorticity equation (6) can be written 
as a self-contained differential equation for the Reynolds stress. The natural 
boundary condition is an imposed stress history rather than a velocity history. 
Wall-stress histories will be found that admit scale similarity between the stress- 
bearing turbulence and the mean vorticity in the fully turbulent part of the flow. 
The Rayleigh layers generated by such histories correspond to Clauser’s equili- 
brium boundary layers, and the correspondence is surprisingly close. 

2. Analogy between equilibrium Rayleigh and boundary layers 
Laminar Rayleigh flow is often used as an analogy to clarify the way vorticity 

spreads in a boundary layer. The analogy for equilibrium turbulent flows runs 
much deeper. The Rayleigh momentum equation is linear in the velocity profile. 
The turbulent boundary-layer equation behaves almost as if it  too were linear, 
because the non-linear advection terms are significant only near the wall where 
they are swamped anyway by the rapid drop in eddy resistance. Each similarity 
solution of the Rayleigh problem is, as we shall see, identical to an equilibrium 
boundary-layer solution a t  inJinite Reynolds number. 

Consider, for example, the constant pressure boundary layer. The notation 
and technique of Mellor & Gibson (1966) will be followed except that tildes will 
be used over dimensionless variables to distinguish them from variables scaled 
in a slightly different way in subsequent sections. If the mean velocity defect 
and the eddies adjust to the same local velocity scale u,(x) and length A(x), then 
the defect and stress profiles have the forms 

urn- u = ~ , J ” ’ ( s ) ,  
7 = u;s“(q), 

,$I=- - 9  
A ‘  

where 

Mellor & Gibson choose u$ to be the wall stress and set 

so that (u,/Urn)A = a*, the displacement thickness of the boundary layer. If 
the stream function f”= 0 a t  8 = 0, then those choices establish the boundary 
conditions 

The similarity forms can be substituted into equations (2) and (3) to find the 
relation between S and f” based on the mean dynamics. The result involves x- 
derivatives of u,, but they can be eliminated by the law of the wall : 

u 1 u y  
- = -ln-T’+C,, 
U, K V 

in the region a* 9 y 9 u/u,; u is the molecular viscosity and C, z 4.9 is a universal 
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constant. If the Q{T} relation assumed is reasonable (e.g. equation (1) or (4)), the 
solution to the dynamic problem approaches 

u,-u - 1 y + C, -- In - 
U ,  K A  

as ij -+ 0;  Mellor & Gibson find 0, !z - 0.6 for the constant pressure layer. Thus 
u, and Aarerelatedby 

- = -In--- y+C,+0,, 
Y K  v 

where y G u,/U,. The argument of the logarithm can be written U,S*lv, the 
Reynolds number of the boundary layer based on displacement thickness. 
y is small at large Reynolds numbers, typical experimental values being 0.02- 
0.05. The equation governing the mean dynamics for dP/dx = 0 is 

A differential equation for A(x)  is found by integrating (9) over all i j  and using the 
boundary conditions (7). 

If the right-hand side of (9) is negligible, the integration gives 

dAldx E y (10) 

so that s”’--r”p 0. (11) 

Equation ( l l ) ,  involving no functions of x ,  is the kind of similarity relation 
one would wish for. Equation (8) can be written in the form A = A(?) and 
substituted into (10). The resulting differential equation for y can be integrated 
to find the wall stress for all x. 

Let us leave open for a moment the question whether the right-hand side of 
(9) really is negligible and consider the analogous Rayleigh problem. The velocity 
defect is replaced with 

- UIU, =7(S,, 

the scale 
A = - /  “ U  -dy 

0 u, 

is a function of time, but the meaning of s” and the boundary conditions (7)  are 
unchanged. Suppose the velocity of the moving plate is adjusted so that the 
wall stress remains constant in time. Then u, is constant, and the momentum equa- 
tion (5) becomes 

An integration from = 0 to co yields dA/dt = u,, so 

A = ~ , ( t - to ) ,  (12) 

where to is the virtual origin in time when the Rayleigh layer would have had 
zero thickness, had it followed a similar development throughout its history. 
Thus s”L--r”p = 0, (13) 
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exactly what the boundary-layer equation would be if the non-linear (and 
non-similar) right-hand side could be dropped. The Rayleigh velocity profile for 
constant wall stress is identical to the universal part of the constant pressure 
boundary-layer profile. In  particular, 

-- U -+ G2--In- 1 Y  
a, K A  

as +j -+ 0,  where c2 can be taken from a boundary-layer solution. The law of the 
wall, in the form 

(14) 
u-uw 1 u,y 

= -1n-+CC,, 
U, K V 

should hold for a wall moving at  a speed U,. The wall-speed programme 

therefore generates a constant stress Rayleigh layer whose depth grows linearly 
with time. The mean-field and eddy scales are exactly similar in the fully turbu- 
lent part of the flow, and the stress and velocity profiles are related therein by a 
similarity equation (13) very much like the equation for the constant pressure 
boundary layer. The differences are that the complete boundary-layer equation 
(9) contains irremovable functions of x, that boundary-layer profiles can there- 
fore not be exactly similar, and that the relation of u, to x in the boundary-layer 
problem is much more involved than the analogous relation of Uw to t in the 
Rayleigh problem. 

Equation (1  1) is a dimensionless version of the linearized momentum equation 

for the velocity defect 42 = U, - U .  Equation (11) follows directly from (16) if 
u, is assumed to vary slowly. Equation (16) is valid in the outer part of the 
layer where @ < U,. Close to the wall, where 42 - U, and equations (16) and (1  1)  
are inaccurate, the flow is dominated by a rapid fall in eddy resistance. As 
the Reynolds number U,6*/v becomes large, y becomes small, and the fractional 
velocity defect @/Urn = $'(+j) becomes small at any fixed +j. Equation (16) be- 
comes valid everywhere in the layer except in a region of decreasing thickness 
in a, just above the laminar sublayer, where the flow is insensitive to non-linear 
advection anyway. It is not surprising that the constant pressure boundary- 
layer profile tends to the shape of a Rayleigh flow at large Reynolds numbers: 
the quantity x/U, in (16) plays the part that t plays in (5). 

The existence of functions of x on the right-hand side of (9) means that the 
boundary layer cannot achieve full similarity at  finite Reynolds numbers, even 
in the fully turbulent part of the flow. The boundary layer responds to both 
U, and u,, and the ratio of the two is not fixed. U, is defined with respect to the 
wall and comprises the velocity slip that occurs in the laminar sublayer adjacent 
to the wall. That slip depends on the molecular viscosity v and does not scale on 
the velocity u, characterizing the turbulent eddies. The fully turbulent part of a 
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Rayleigh layer, on the other hand, never sees the wall speed U,. Even though 
U, depends on Y and is non-similar, the fully turbulent part of a Rayleigh layer 
attains exact similarity if the right amount of stress i s  transmitted through the 
laminar sublayer. 

One such stress programme is constant wall stress, as we have seen, and the 
resulting Rayleigh flow has the same dynamics as a constant pressure boundary 
layer in the limit of infinite Reynolds number. A family of such programmes is 
studied in the next few sections. Each member of the family corresponds to one 
of Clauser’s equilibrium boundary layers. The similarity equation for the bound- 
ary layers (Mellor & Gibson’s equation (43a))  can be obtained from the general 
linearized momentum equation 

a% auw du, a% ar 
uw-++--yy---+-=o, 

ax ax ax ay ay 
which comes from (2), (3) ,  and the free-stream condition dPldx = - UwdUw/dx. 
Equilibrium layers have constant values of the pressure gradient parameter 

p = - - = - - -  6” dP A dUw 
u; ax u, ax 

and satisfy the similarity equation 

s”’-(1+2p)ip--2pf”l= 0 

at infinite Reynolds number. 

3. The family of self-similar Rayleigh flows 
The vorticity equation (6) admits solutions of the form 

7 = 4 t )  471, 

Either combination yields an equation free of explicit dependence on time; 
as far as the mean dynamics is concerned, the stress-bearing eddies and the 
mean flow can adjust to the same velocity and length scales. Therefore they 
do so, according to the arguments of Townsend (1956). 

An algebraic combination with c > - 2 represents a spreading Rayleigh layer 
with zero thickness at il finite virtual origin in time. The other algebraic com- 
binations of CT and I represent contracting layers. Boundary layers actually can 
contract under highly favourable pressure gradients: V is then strongly negative 
above the wall, and inward convection by the mean field overcomes the tendency 
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of turbulence to spread. No such convection mechanism is available in a Rayleigh 
flow, so the cases c < - 2 must be ruled out. The case c = - 1 corresponds to 
continuously separating flow with zero wall stress. The cases - 2 < c < - 1, 
involving negative wall stress and various degrees of reversed flow, are excluded 
from the discussion of 9 4 et seq. to avoid cumbersome absolute value signs. 

It is convenient to write 

} 
0- = & ( t - t o ) C ,  

1 = (EQ): (t - t 0 ) 1 + C / 2 ,  

and to set the wall stress u: = (l+c)0-.  (19) 

Equation (6) becomes (20) 

s(0) = 1 + c ,  s(o0) = 0. (21) 

s” + k*( 1 + t c )  yg’ + k4g = 0, 

and the boundary conditions on stress are 

Q is a measure of the intensity of the stress imposed a t  the plate, and k is a 
dimensionless constant whose value is specified in 9 4. An alternative procedure 
is to follow Mellor & Gibson and set u = up and 1 = A as was done in the previous 
section. The advantage of the present choice for 0- is that a transformation for 
highly retarded flows, which Mellor & Gibson have to carry out explicitly, is 
made unnecessary by the boundary condition s(0) = 1 + c. The advantage of 
introducing E at this stage is explained in § 4. 

Equations (20) and (21), together with a relation !2{~> written in similarity 
form g{s}, determine the stress distribution s. The velocity profile can be found 
directly from s by integrating the momentum equation (5) from to to t. The result 

where 

and -f” = g. f can also be expressed as an integral of g{s), but the two modes of 
expression must be the same numerically as long as the dynamic relation (20) 
between s and g is satisfied everywhere. For a reasonable assumption about 

( l + C ) i  y 
In - 

1 
f’ + C2(C) - ___ 

K 

as 7 = y/Z + 0. A comparison with the law of the wall (14) shows that the wall- 

is required to generate the self-similar Rayleigh layer whose stress and length 
scales satisfy equations (18). 

The derivative of (17) is structurally the same as equation (20)  if 
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the remaining differences being removable by rescaling s, g and 7 to conform 
with the scaling adopted in $2.  A solution of (20) can be rescaled as the stress 
profile of the equilibrium boundary layer characterized by p(c) .  The boundary- 
layer and Rayleigh solutions, of course, share the same assumption about !2{7). 
Details of the connexion between equilibrium boundary and Rayleigh layers are 
treated elsewhere (Crow 1966). 

4. Q{r} based on the two-layer model 
The object now is to find a relation of the form g{s) reasonably well founded on 

physical arguments about the stress-bearing eddies. Arguments originally ad- 
vanced in boundary-layer theory will be adapted to the Rayleigh problem. The 
two-layer model of Clauser and Townsend will be used, with a wall layer 
in energy equilibrium and an outer layer having an eddy viscosity independent 

Townsend’s (1961) energy balance argument can be taken over with little 
alteration to establish (4) near the wall of a Rayleigh layer. The turbulent energy 
equation for the Rayleigh problem is 

of y .  

aE aF 
--7Q+-+€ = 0, 
at aY 

where 

E = +(u2 + v 2  + w2) 
F = v{p + Q(u2 + w 2  + w2)) is the lateral flux of turbulent energy, and 

is the turbulent energy density, 
_ _ _ _ ~  

= E%/L, is the rate of energy dissipation. 

L, is a dissipation length defined in terms of 
in a Rayleigh flow means that 

where 7Q is the rate of generation of turbulent energy by interaction with the 
mean field. Townsend’s relation (4) follows provided that E,  F and r scale on 
the same velocity, so 

7 = 2a, E, 

for example, and that L, N y near the wall. The similarity form of (4) is 

as shown. Energy equilibrium 

laE/atl g 70, (24) 

9 = (S+/KT)b ,  (25) 

where b E 1 - B ( ~ / s )  Is’\. 

b = 1 gives the Prandtl result (1); the additional term in b represents the effect 
of lateral transport of turbulent energy. There is no reason to doubt that the 
values K z 0-41 and B z 0.2 obtained from experiments on boundary layers hold 
for Rayleigh flows as well. 

Inequality (24) can be written 

ar < T Q .  
2a, - 1 - 1  at 
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The vorticity equation (6) implies that 

wherever the Prandtl relation (1) is an adequate approximation. The condition 
for energy equilibrium is therefore 

or, in similarity form, 

a, is known to be about 0.15 in boundary layers (Bradshaw, Ferriss & Atwell 
1967), so Kz/al  M 1. Inequality (26) is strongly satisfied in the wall regions of 
calculated stress profiles. The requirement L, N y fails well within the energy- 
equilibrium region and constitutes the most important limitation on (4). 

The Q{7) relation in the outer layer is based on an assumption about the eddy 
viscosity v, 2 7/Q.  Clauser (1956) found that the turbulent Reynolds number 

k-l = U , ~ * / Y ,  

is very nearly a universal constant in the outer parts of equilibrium boundary 
layers. k is about 0.015. The eddy viscosity is thus 

= k (Urn- U)dy. 
10, 

The analogous assumption for the outer part of a self-similar Rayleigh layer is 

Therefore !2 = T/kM, 

where M = - 

According to  the momentum equation (5) and the relations (18) and (19), 

U dy is the negative of the total mean momentum in the flow. sum 
r t  

M = u?(T) d T  = &(t - t 0 ) l + C ,  J t o  
(27) 

so the similarity form of the constant-k assumption is 

g = s/k& (28) 

The comprehensive g{s} relation consists of equations (25) and (28) joined a t  
their point of equality ye. It is convenient to define the dimensionless constant 

h h d / K  7Z 0.30 

r = 84. and to write 

Expressions (25) and (28) give equal values of g where 

rere = hb,. 
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That defines the junction between wall and outer layers. In the wall layer 
0 < 7 < ye, equation (20) takes the form 

a non-linear, ordinary differential equation for the stress. In the outer layer 

s”+( l+Qc)ys’+s  = 0. (31) 
7 ’ ye,  

Equations (30) and (31) must be solved separately and the solutions matched at 
the point qe determined by (29). The single boundary condition s(0) = l + c  
is applied to the wall solution, and s(c0) = 0 is required of the outer solution. 
Since both equations (30) and (31) are of second order, two matching conditions 
are required. One of them is continuity of s; it is easy to show the other is then 
continuity of slope s’. Equations (30) and (31), taken together, have the form 

S” = H ( 7 ,  S, s’; A ) ,  

where H changes its functional form at ?le. Since s is continuous, the most s‘ 
can do is jump. Consequently H and hence s’’ can have at most a jump discon- 
tinuity at  ye. Hence sf is continuous. 

None of the equations (29)-(31) involves K or k separately, but only combined 
into A. Under the present assumptions about Q{T), the stress distribution for 
any c depends on two empirical constants only: h and B. The constant Ic was in- 
troduced in equations (18) to bring out that fact. k fixes the relationship between 
the depth and the momentum content of a Rayleigh layer, but it does not sepa- 
rately affect the shape of the stress profile. 

5. General consequences of the two-layer model 

Jeffreys 1956, p. 622). It can be written in standard form 
The outer equation (31) is well known (Townsend 1956, p. 270; Jeffreys & 

sCC -+ csC - ns = 0, 

with 

and 

5 =  ( l+Qc)q 

n = - (1  + & - I .  

The solution vanishing as 5 + GO is written 

s = A Hhn([) .  
Some special Hh, functions are 

Hh-,([) = e-@, 

Hh-,(Y) = Ce-@. 

For q very small, the wall-layer equation (30) can be treated generally by 
means of the transformation 5 = 117. The resulting equation for 4.9 is 
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As 6 + 00, s(E) smoothly approaches its asymptotic value (1 + c ) .  It will be found 
that b -+ 1 except in the case c = - 1. Thus 

as 5 -+ co, and the second term on the right becomes negligible compared with the 
second term on the left. The solution valid for large 6 is 

so (33) 

as q --f 0. The constant a can be determined only by solving the complete problem. 
s’ has a logarithmic singularity at 7 = 0 unless c = 0 or - 1, but it is easy to see 
from (25) that 6 -+ 1 at  the origin anyway. The argument leading to (33) breaks 
down when c = - 1, but the result is, in fact, valid in that case too. 

The non-analytic behaviour of s near the origin is a surprising consequence of 
the mean flow dynamics. Mellor (1966) found the same kind of behaviour in the 
analogous boundary-layer stress profiles. The singularity is not strong enough to 
a,lter the logarithmic part of the velocity profile, and it is absent if the wall stress 
is constant, c = 0, or is zero, c = - 1. Exact solutions of (30) have been found in 
those two cases for arbitrary h and B. The solutions make possible a complete 
analytic description of the c = 0 and c = - 1 Rayleigh layers. The absence of the 
7 In 7 term near the wall suggests that the solutions €or c = 0 and - 1 may be 
especially simple. Equation (30) is highly non-linear, however, and a general 
closed-form solution would not be expected anyway. 

6. Solution for constant wall stress, c = 0 

In  the case c = 0, the first integration of (30) is trivial and the outer solution is 
the first of equations (32). The integrated wall-layer equation, the matching 
point condition, and the stress distribution in the outer layer are as follows: 

( a )  s’ + hbr = K ,  

(c )  s = Ae-47’. 

The constant of integration K can be found immediately by matching slopes 
at re: 

Thus K = 0. Equation 

or, written out in full, 

I 

s, = -31 e r2 e by (c), 
= -hbere by (b) ,  

= K-hbere by (a). 

(a)  becomes 

2r’+hb = 0, 

2r‘ + h + 2hB (qr ’ / r )  = 0, 
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where the fact that s‘ is negative has been anticipated. The equation can be 
inverted so that y becomes the dependent variable 

dy 2 B  2 
- + - T / + -  = 0. 
dr r h 

The new equation is linear in 7, and the solution satisfying the boundary condition 
~ ( 1 )  = 0 is 

(r--2B - r 1. = h ( 2 B +  1 )  (34) 

The stress slope a appearing in (33) has the value - h for all B. If B = 0, (34) can 
be written y =  1 - l h  

2 8-  
1 .o 

S 0.5 

0 1 2 3 

7 
FIGURE 2.  Stress profile in the case c = 0. 

B a 71, A 

0 - 0.30 0.315 0.954 
0.2 - 0.30 0.309 0-954 
0-5 - 0.30 0.300 0.956 
1.0 - 0.30 0-287 0.958 

TABLE 1 

A,  ye and s, can be computed by solving (b) ,  (c) and equation (34) simultane- 
ously at the matching point. Table 1 contains values of a, ye and A obtained for 
h = 0.30 and B = 0,0.2, 0.5 and 1.0. The stress profile for any of those values of 
B is plotted in figure 2. The profile is practically insensitive to Townsend’s lateral 
transport term, because the turbulent energy density varies only slightly through- 
out the wall layer of a Rayleigh flow generated by a constant wall stress. 

7. Solution for continuously separating flow, c = -1 

(30) for the wall layer is 

or 

The outer solution for the case c = - 1 is the second of equations (32). Equation 

7s“ + $h[(br) + ~ ( b r ) ’ ]  = 0, 

(7s’ - s)‘+ $h(ybr)’ = 0. 
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The fbst integral of ( 3 0 )  satisfying s(0) = 0, the matching condition and the outer 
solution are as follows: 

(a) 7s' - s + ihybr  = 0,  

(b )  rere = hbo 
( c )  s = A ~ e - 4 ~ ' .  

In  this case, however, the condition that s' is continuous across the junction 
re is identically satisfied : 

by (c ) ,  s t  = 5 "eSe 

r e  2 

h - - % - - b e r e  by ( b ) ,  
r e  2 

and the last equality holds identically for any solution of (a) .  The amplitude of 
the profile s(7) appears to be non-unique. 

The non-uniqueness is due to a physical circumstance peculiar to continuously 
separating flow. In  every other case the momentum in the field is determined by 
the history of the stress at  the wall, but the wall stress is zero for continuously 
separating flow, and the momentum is injected into the field by unspecified 
means. According to ( 2 2 ) ,  

( 3 5 )  

Thus M = 2QIom dy 

specifies the amount of negative momentum in the mean flow. Equation (27) 
implies that M -+ Q as c + - 1, but the equation itself breaks down when c is 
exactly - 1, since u, is then zero. It is reasonable, nevertheless, to define Q E M 
when c = - 1 in order to make the relation between M and Q continuous over the 
whole family of self-similar flows. That definition requires the stress profile to  
satisfy the side condition 

which removes the non-uniqueness. 
Equation (a)  is 

2yr' - r + $hy + hBy2(r'/r) = 0, 

written out in full under the anticipation that s' is positive. The boundary con- 
dition s(0) = 0 has already been used to perform the first integration. A second 
integration can be carried out in termsof the condition s'(0) = a. The substitutions 

R = r/(ay)B, Y = (r/a)9 

lead to a linear equation for Y(R):  

The solution satisfying Y ( 1) = 0 is 
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The relation takes on simpler forms for some special values of B :  

B = 0, r = (ay)B- &AT; 
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B = 1, r = (ar):. 

satisfies (37) very accurately everywhere in the wall layer for all reasonable 
values of B. 

B a % A 
0 0.382 0.721 0-273 
0.2 0.358 0.633 0.277 
0-5 0.324 0-472 0.280 
1.0 0.282 0 0.282 

TABLE 2 

0.3 I I 1 I 

0 1 2 3 4 5 
k 

FIGURE 3. Stress profile in the case c = - 1: -, B = 0; ----, B = 1. 

The quantities a, A ,  ye and s, can be found by solving ( b ) ,  (c) and equation (37) 
simultaneously a t  the matching point and imposing the side condition (36). 
Results for h = 0.30 and the same values of B as before are presented in table 2 .  
The theory is consistent only for values of B in the range 0 < B < 1. If B < 1, 
s ( ~ )  bends over fast enough in the wall layer to match tho outer solution (c) in 
amplitude and slope at a point ye > 0. If B = 1, s is linear in the wall layer and 
matches (c) only if re = 0. The wall layer disappears for B 2 1. The stress profile 
s(7) is plotted in figure 3 for the extreme values B = 0 and B = 1. The correspond- 
ing velocity profiles s / ~  (cf. equation (35)) are plotted in figure 4. 
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FIGURE 4. Velocity profile in the case c = - 1 : -, B == 0 ;  _ _ _ -  ,B=1. 
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FIGURE 5. Velocity near the wall in the case c = - 1 : - ,B=O; __ B = 0.2. --- B = 0.5; - - - - ,  B = 1.0. , ,  

Figure 5 is a close-up plot of the velocity profile near the wall for various values 
of B. The figure is oriented so that the abscissa represents the wall. The shape 
of the profile near the wall depends sensitively on the value assigned to the 
coefficient B of Townsend’s lateral transport term. Lateral transport of turbu- 
lent energy can have an important effect on the mean flow in a separating layer, 
Mellor & Gibson adopted the Prandtl relation (1) for their boundary-layer cal- 
culations, and thus, in effect, set B = 0. If Townsend’srelationis animprovement, 
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then Stratford’s experimental data for the continuously separating boundary 
layer should deviate from Mellor & Gibson’s calculated profile in the same way 
that profiles for successively higher values of B deviate from the B = 0 profile 
in figure 5. A comparison between figure 5 and Mellor & Gibson’s figure 9 shows 
that Townsend’s transport term modifies the predicted velocity profile in just the 
right way and that B z 0.2 is a reasonable value. The comparison is only quali- 
tative, of course, since Mellor & Gibson take into account advection terms that 
are absent in the Rayleigh problem. 

According to (23) or (35), the wall-speed programme 

maintains a continuously separating Rayleigh layer containing momentum 
-1M. A velocity slip across the laminar sublayer, negligible for large values of 
the Reynolds number M/v ,  has been disregarded (Stratford 1959). 

8. Concluding remarks 
It would be very difficult to establish a turbulent Rayleigh layer experi- 

mentally. Any practical set-up would involve approximating an infinite plane 
wall with a curved or finite surface. Departures from the ideal geometry would 
exert an unpredictable influence on the flow. Conceptually, however, a Rayleigh 
experiment is simple : to generate a self-similar Rayleigh layer, for example, 
move a plate according to the programme (23). The connexion between the 
similarity solutions and the physical situation is very clear. Two-dimensional 
boundary layers have their own difficulties: practical experiments can be 
carried out, but the theory is cumbersome. Boundary and Rayleigh layers 
share a common eddy structure; the differences arise in the kinematics of 
the mean flow. The two kinds of flow are so alike that self-similar Rayleigh 
profiles are related to equilibrium boundary-layer profiles by a formal analogy 
that becomes quantitatively exact in the limit of infinite Reynolds number. 
The Rayleigh problem should therefore be a useful touchstone for theories of 
Reynolds stress. It proved to be a natural setting for Townsend’s energy- 
equilibrium theory. 

I enjoyed much stimulating discussion about Rayleigh flow with Peter Brad- 
shaw at the National Physical Laboratory. The major part of this research was 
carried out there during the summer of 1964. The work was completed under the 
auspices of the United States Atomic Energy Commission a t  the Lawrence 
Radiation Laboratory, Livermore, California. 
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